The Institutional Foundation of China's Financial System

Wei Xiong Princeton University

Lecture in IMF February 8, 2019

Motivation for Understanding China's Financial System

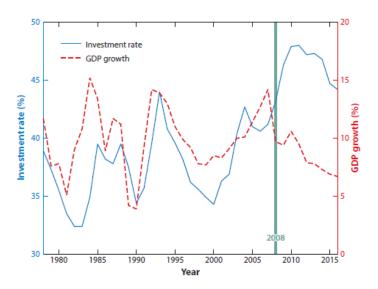
Concerns about China's financial stability

- Rapidly rising leverage and a booming shadow banking sector
- ► Skyrocketing housing prices across China
- Unstable capital flow and exchange rate
- Volatile stock market and intensive speculation

Challenges

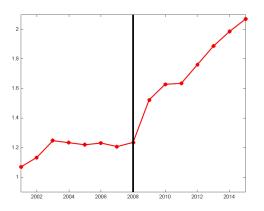
- China has a different economic system, and the financial system is designed in a particular way to support the economy
- Need a separate conceptual framework to systematically understand China's economy and financial system

Outline


- An overview of China's economic system and financial stability
 - ► Song and Xiong (2018), "Risks in China's financial system"

- China's government system and the economy
 - Xiong (2018), "The Mandarin Model of Growth"
- Government policy and market speculation
 - Brunnermeier, Sockin and Xiong (2017), "China's Model of Managing the Financial System"

An Overview


► Song & Xiong (2018): "Risks in China's Financial System"

Concerns: The Economic Slow Down

Concerns: Rising Leverage

Debt to GDP ratio (excluding central government debt)

Note: The outstanding debt is backed out from "social financing statistics" provided by NBS, which measures lending from the financial sector to the non-financial sector

Concerns: The Booming Shadow Banking Sector

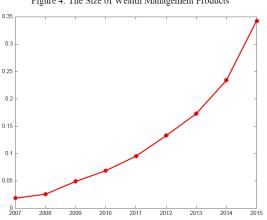
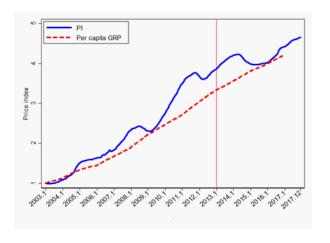



Figure 4: The Size of Wealth Management Products

Note: The figure plots total WMP balances as percent of GDP. Data source: China's Banking Wealth Management Market Annual Report (various issues)

Concerns: The Housing Boom

Source: Fang, Gu, Xiong & ZHou (2016) and NBS

China's Unique Institutional Environment

Institutional origins of financial risks in China

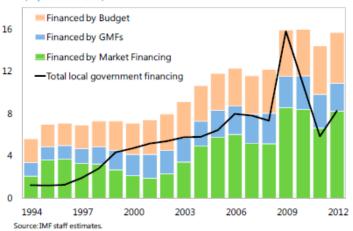
- ► The two-track reform makes the state sector and the non-state sector co-exist, compete, and flourish together
 - Lau, Qian and Roland (2000)
- Soft-budget constraints to SOEs, state banks, and local governments
 - Qian (2017), Xu (2011)

Two points:

- The rising leverage is mostly from state banks to state firms and local governments
 - A western style debt crisis is unlikely, even though the efficiency of capital allocation is a key concern
- ▶ The housing boom is heavily related to local governments
 - A housing crash is less likely, although high housing prices may distort resource allocation in the economy

▶ Xiong (2018): "The Mandarin Model of Growth"

China's Government System & the Economy


The Government System

A politically centralized but fiscally decentralized system:

- regional leaders are appointed by the central government
- ▶ local governments contributed to over 70% of fiscal spending
- local governments have de facto control of local SOEs
- local governments are fully responsible for developing local infrastructure, markets, & institutions
- Agency problems and the economic tournament among local governments
 - strong incentives to develop local economies, e.g., Xu (2011) and Qian (2017)
 - rising leverage and housing prices are both associated with local government inventives

Stylized Fact: Infrastructure Investment

Infrastructure Investment and Financing Sources (In percent of GDP)

The Mandarin Model of Growth

- ► The baseline structure builds on Barro (1990)
 - Infrastructure developed by local government as a third production input that boosts local productivities
 - Each regional governor allocates local fiscal budget between infrastructure investment & government consumption
 - The local government's infrastructure investment directly drives firms' capital and labor choices
- Tournament among regional governors, through a joint performance evaluation based on local output
 - ▶ Implicit incentives by signal jamming, a la Holmstrolm (1982):
 - drive each governor to invest in infrastructure, mitigating an under-investment problem in infrastructure
 - Short-termist behaviors:
 - Overreporting of local output (a la Stein, 1989), excessive leverage, shadow banking boom
 - Spillover of short-termist behaviors across regions

Related Literature

Institutional reform of the Chinese economy

- Qian and Roland (1998)
- ► Lau, Qian and Roland (2000)
- Maskin, Qian, and Xu (2000)
- ► Li and Zhou (2005)

Macro models of the Chinese economy

- ► Song, Storesletten and Zilibotti (2011)
- Li, Liu and Wang (2015)

Government spending & the economy

▶ Barro (1990), Easterly and Rebelo (1993), and Glomm and Ravikumar (1994)

The Baseline Setting

A small open economy with ${\it M}$ regions and government infrastructure investment

► The output of region *i* is given by

$$Y_{it} = A_{it} K_{it}^{\alpha_i} L_{it}^{1-\alpha_i} G_{it}^{1-\alpha_i}$$

- A_{it} is the local productivity, random & iid
- K_{it} is the capital
- L_{it} is the local labor input
- $ightharpoonup G_{it}$ is infrastructure created by the local government
- Each region has overlapping generations of households and a representative firm
- ▶ The regional government collects τY_{it} as tax revenue, separately from labor and capital, for infrastructure development and government consumption

Firm

A representative firm in each region first observes the current period productivity A_{it} and then hires labor at a competitive wage Φ_{it} and rents capital at constant rate R:

$$\max_{\{K_{it},L_{it}\}} A_{it} K_{it}^{\alpha_i} L_{it}^{1-\alpha_i} G_{it}^{1-\alpha_i} - \Phi_{it} L_{it} - RK_{it}$$

Fixed labor supply $L_{it} = 1$, which implies

$$\Phi_{it} = (1 - \alpha_i) A_{it} K_{it}^{\alpha_i} G_{it}^{1 - \alpha_i}.$$

The optimal capital choice:

$$K_{it} = \left(\frac{\alpha_i A_{it}}{R}\right)^{1/(1-\alpha_i)} G_{it}.$$

► The regional output

$$Y_{it} = \left(\frac{\alpha_i}{R}\right)^{\alpha_i/(1-\alpha_i)} A_{it}^{1/(1-\alpha_i)} G_{it}$$

Local Government

▶ A new governor is assigned in each period with a budget of

$$W_{it} = \tau Y_{it} + (1 - \delta_G) G_{it}$$

on either G_{it} infrastructure or E_{it}^{G} government consumption

$$G_{it+1} + E_{it}^G = W_{it}$$

Suppose each governor has an objective:

$$V\left(W_{it}
ight) = \max_{G_{it+1}, E_{it}^{G}} E_{t} \left[\gamma \ln \left(E_{it}^{G}
ight) + \beta V\left(W_{it+1}
ight)
ight]$$

▶ Without tournament, the optimal infrastructure investment is

$$G_{it+1} = \beta \left[\tau Y_{it} + (1 - \delta_G) G_{it} \right].$$

• Under-investment relative to the first best for maximizing social welfare: $G_{it+1} = \beta \left[Y_{it} + (1-\delta) G_{it} \right]$.

Tournament of Regional Governors

Regional productivity with three unobservable components:

$$A_{it} = e^{f_t + a_{it} + \varepsilon_{it}}$$

- $f_t \sim N(\bar{f}, \sigma_f^2)$ a countrywide common shock
- $a_{it} \sim N(\bar{a}_i, \sigma_a^2)$ the governor's ability
- $\varepsilon_{it} \sim N(0, \sigma_{\varepsilon}^2)$ iid noise
- ► The central government's learning

$$\widehat{a}_{it} = E\left[a_{it} | \{Y_{it}\}_{i=1,...,M}\right]$$

with

$$\ln\left(Y_{it}\right) = \frac{1}{1 - \alpha_i} \left(f_t + a_{it} + \varepsilon_{it}\right) + \frac{\alpha_i}{1 - \alpha_i} \ln\left(\frac{\alpha_i}{R}\right) + \ln\left(G_{it}\right)$$

The Career Concern

â:+ - ā:

▶ The central government's learning:

$$= \frac{\sigma_{a}^{2}\left(\sigma_{a}^{2} + \sigma_{\varepsilon}^{2} + \left(M - 1\right)\sigma_{f}^{2}\right)}{\left(\sigma_{a}^{2} + \sigma_{\varepsilon}^{2}\right)\left(\sigma_{a}^{2} + \sigma_{\varepsilon}^{2} + M\sigma_{f}^{2}\right)}\left[\left(f_{t} - \bar{f}\right) + \left(\mathbf{a}_{it} - \bar{\mathbf{a}}_{i}\right) + \varepsilon_{it} + \left(1 - \alpha_{i}\right)\left(\ln G_{it} - \ln G_{it}^{*}\right)\right] \\ - \frac{\sigma_{a}^{2}\sigma_{f}^{2}}{\left(\sigma_{a}^{2} + \sigma_{\varepsilon}^{2}\right)\left(\sigma_{a}^{2} + \sigma_{\varepsilon}^{2} + M\sigma_{f}^{2}\right)}\sum_{j \neq i}\left[\left(f_{t} - \bar{f}\right) + \left(\mathbf{a}_{jt} - \bar{\mathbf{a}}_{j}\right) + \varepsilon_{jt} + \left(1 - \alpha_{j}\right)\left(\ln G_{jt} - \ln G_{jt}^{*}\right)\right]$$

where G_{it}^* is the anticipated level

- **Signal jamming** as a_{it} and $\ln G_{it}$ are not observable
- Spillover
 - ▶ Case 1: if $G_{it}^* = G_{jt}$ (rational expectations), G_{jt} doesn't interfere
 - ▶ Case 2: if $G_{jt}^* = G_{jt-1}$ (adaptive learning), there may be spillover and rat races across regions

Tournament-Driven Investment

$$V\left(W_{it}\right) = \max_{G_{it+1}} E_{t} \left[\gamma \ln \left(W_{it} - G_{it+1}\right) + \underbrace{\chi_{i} \left(\hat{a}_{it+1} - \bar{a}_{i}\right)}_{\text{career concern}} + \beta V\left(W_{it+1}\right) \right]$$

Rational expectations of the central government imply

$$\chi_i\left(\hat{\mathbf{a}}_{it+1} - \bar{\mathbf{a}}_i\right) \propto \kappa_i\left[\ln\left(G_{it+1}\right) - \ln\left(G_{it+1}^*\right)\right],$$
 with $\kappa_i = \frac{\sigma_a^2\left(\sigma_a^2 + \sigma_\epsilon^2 + (M-1)\sigma_f^2\right)}{\left(\sigma_a^2 + \sigma_\epsilon^2\right)\left(\sigma_a^2 + \sigma_\epsilon^2 + M\sigma_f^2\right)}\left(1 - \alpha_i\right)\chi_i$

The tournament helps to mitigate under-investment:

$$G_{it+1} = \left[\frac{\kappa_i}{\gamma + \kappa_i} (1 - \beta) + \beta\right] (\tau Y_{it} + (1 - \delta_G) G_{it})$$


Short-termist Behaviors

Powerful incentives can lead to short-termist behaviors

- Over-reporting of local output
- Excessive leverage
- A rat race through shadow banking borrowing

Stylized Fact: Over-reporting of Regional Output

- ► GDP gap: (sum of provincial GDPs national GDP)/national GDP
- ▶ % of provinces reporting growth rate higher than the national rate

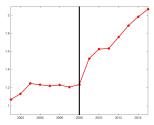
Output Overreporting

Suppose that the central government relies on regional governors to report regional output

• A governor can choose to inflate the output by $e^{\varphi_{it}}$:

$$Y'_{it} = Y_{it} e^{\varphi_{it}}$$

► The cost is a higher tax transfer to the central government:


$$\tau_c Y'_{it} = \tau_c e^{y_{it} + \varphi_{it}}$$

- ▶ Career concern $\hat{a}_{it+1} = E\left[a_{it+1} | \left\{Y'_{it+1}\right\}_{i=1,\dots,M}\right]$ leads to over-reporting, i.e., positive φ_{it+1} in equilibrium
 - Like earnings management by publicly listed firms, e.g., Stein (1989)
 - Unreliable statistics are a result of the bureaucracy!
- Overreporting may have severe consequences on central government decisions
 - ► The great famine in 1959-1961 (Fan, Xiong & Zhou, 2016)

Rising Leverage

- ▶ Local governments were not allowed to raise debt before 2008
- China's massive post-crisis stimulus in 2008-2010 opened the floodgate
 - To implement the stimulus, local governments were implicitly allowed to set up "Local Government Financing Vehicles (LGFVs)" to borrow from banks, e.g., Bai, Hsieh & Song (2016)
 - After the stimulus ended in 2010, the central government instructed banks to stop lending to LGFVs, leading to a shadow banking boom, e.g., Chen, He & Liu (2017)

Concerns: Rising Leverage through Shadow Banking

Note: The outstanding debt is backed out from "social financing statistics" provided by NBS, which measures lending from the financial sector to the non-financial sector

Figure 4: The Size of Wealth Management Products

Note: The figure plots total WMP balances as percent of GDP. Data source: China's Banking Wealth Management Market Annual Report (various issues)

Excessive Leverage

Suppose a local government borrows D_{it} at interest rate R_{it}

▶ Its budget at time t:

$$G_{it+1} + E_{it}^G = W_{it} + D_{it}$$

where

$$W_{it} = \tau Y_{it} + (1 - \delta_G) G_{it} - RD_{it-1}$$

Debt choice:

$$\begin{split} V\left(W_{it}\right) &= \max_{G_{it+1},\ D_{it}} E_t \left[\gamma \ln \left(W_{it} + D_{it} - G_{it+1}\right) + \chi_i \left(\hat{a}_{it+1} - \bar{a}_i\right) \right. \\ &\left. + \beta V \left(\tau Y_{it+1} + \left(1 - \delta_G\right) G_{it+1} - RD_{it}\right)\right] \end{split}$$

▶ Define leverage as $d_{it} = \frac{D_{it}}{G_{i+1}}$, then debt levers up investment:

$$g_{it+1} = \frac{G_{it+1}}{W_{it}} = \frac{\beta \gamma + \kappa_i}{\gamma + \kappa_i} \frac{1}{(1 - d_{it})}.$$

Excessive Leverage

Optimal leverage determined by

$$\begin{split} \underbrace{\left(\frac{1-\beta}{\beta}\frac{\kappa_{i}}{\gamma+\kappa_{i}}+1\right)\ln\left(\frac{1}{1-d_{it}}\right)}_{\text{incentive to boost current performance}} \\ + \underbrace{E_{t}\left[\ln\left[\tau\left(\frac{\alpha_{i}}{R}\right)^{\alpha_{i}/(1-\alpha_{i})}A_{it+1}^{1/(1-\alpha_{i})}+(1-\delta_{G})-Rd_{it}\right]\right]}_{}. \end{split}$$

- debt cost in the future period
- As $\kappa_i \setminus 0$, the leverage choice converges to the social planner's
 - ► The governor's debt choice is always higher than the planner's
- A mechanism for the tournament to lead to excessive leverage

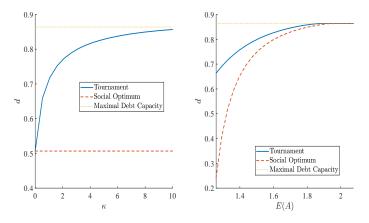


Figure: Leverage with Career Incentives and Expected Growth

Innovations and Leverage Spillover

► The central government's learning:

$$\begin{split} &\hat{a}_{it} - \bar{a}_i \\ &= \frac{\sigma_a^2 \left(\sigma_a^2 + \sigma_\varepsilon^2 + \left(M - 1\right)\sigma_f^2\right)}{\left(\sigma_a^2 + \sigma_\varepsilon^2\right)\left(\sigma_a^2 + \sigma_\varepsilon^2 + M\sigma_f^2\right)} \left[\left(f_t - \bar{f}\right) + \left(a_{it} - \bar{a}_i\right) + \varepsilon_{it} + \theta_i \left(\ln G_{it} - \ln G_{it}^*\right) \right] \\ &- \frac{\sigma_a^2 \sigma_f^2}{\left(\sigma_a^2 + \sigma_\varepsilon^2\right)\left(\sigma_a^2 + \sigma_\varepsilon^2 + M\sigma_f^2\right)} \sum_{j \neq i} \left[\left(f_t - \bar{f}\right) + \left(a_{jt} - \bar{a}_j\right) + \varepsilon_{jt} + \theta_j \left(\ln G_{jt} - \ln G_{jt}^*\right) \right] \end{split}$$

- Policy and financial innovations make it difficult for the central government to form rational expectations of local leverage
- Assume $G_{jt}^* = G_{jt-1}$ (adaptive learning by the central government):
 - One governor's aggressive investment behavior may adversely affect other governors' performance
 - Potential spillover of short-termist behavior across regions

Leverage Spillover

Suppose that each governor i is paired with another governor i':

$$\hat{a}_{it+1} - \hat{a}_{i't+1} = (\lambda + \lambda') [a_{it+1} - a_{i't+1} + \varepsilon_{it+1} - \varepsilon_{i't+1} + (1 - \alpha) (\ln G_{it+1} - \ln G_{i't+1})].$$

• Governor i cares about out-performing i':

$$\max_{G_{it+1}, d_{it}} E_{t} \left[\gamma \ln \left(E_{it}^{G} \right) + \underbrace{\kappa_{i} \left(\hat{a}_{it+1} - \hat{a}_{i't+1} \right) - \phi_{i} \left(\hat{a}_{it+1} - \hat{a}_{i't+1} \right)^{2}}_{\text{relative performance}} + \beta V \left(W_{it+1} \right) \right]$$

- G_{it} increases with $G_{i't}$
- Reciprocally, G_{i't} increases with G_{it}
- An investment rat race financed by a shadow banking boom:
 - ▶ An increase in $\phi_{i'}$ leads governor i' to increase $G_{i't}$ and $D_{i't}$
 - this in turn leads governor i to increase G_{it} and D_{it}
 - consequently governor i' has to further increase G_{i't} and D_{i't}
 - ...

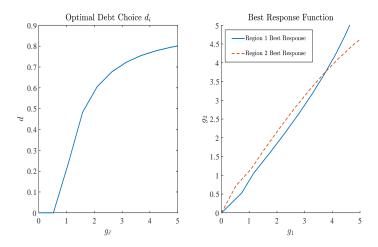


Figure: Equilibrium Debt and Investment Choices

Summary

A growth model with a regionally decentralized government system

- Local governments use Infrastructure investment to drive local economies
 - a key factor for China's rapid growth
 - the financial system serves as a key instrument to support this growth model

Tournament induced short-termist government behaviors provide a series of predictions for the post-stimulus period:

- ▶ Regions with lower investment returns tend to have
 - more pronounced over-investment
 - higher leverage
 - greater over-reporting of local output

Local Government Leverage and GDP Overreporting

GDP overreporting estimated by Bai et al. (2018)

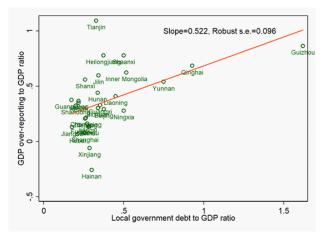


Figure: Provincial GDP overreporting versus local government leverage

Government Policy and Market Speculation

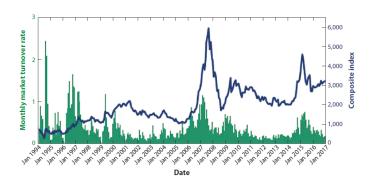
the Financial System"

▶ Brunnermeier, Sockin & Xiong (2016): "China's Model of Modeling

Government Interventions in China's Financial System

History of policies and regulations

- bank required reserve ratio (36 changes 2003-2011)
- suspension of IPO issuance (9 times since 1992)
- stamp tax on stock trading (7 changes since 1992)
- countercyclical mortgage rate and first payment requirement
- installation of circuit breakers (2016)


Direct trading in stock markets

 "national team" directed to bail out stock market in summer 2015, e.g., Huang, Miao, and Wang (2016)

Government's Paternalistic Philosophy

- Large population of inexperienced retail investors
 - banks prohibited from trading in stock exchanges
- ► Large price **volatility** in China's stock markets and heavy turnover
 - ► highest turnover rate among major stock markets (~40% per month)
- ► Asset prices often deviate from fundamentals
 - large price differentials between A-B and A-H stock pairs, e.g., Mei, Scheinkman and Xiong (2009)
 - dramatic warrant bubble in 2005-2008, e.g., Xiong and Yu (2011)
- ► CSRC's mission: protect retail investors and stabilize markets

Concerns: Speculative Stock Market

Conceptual Questions

Intensive and uncertain intervention can directly affect market speculation

- ▶ How does government intervention impact market dynamics?
- How do market participants react to this intervention?
 - do they trade along with or against the government?
- What is the right objective of government intervention?
 - reduce price volatility or improve informational efficiency?

Overview

- Perfect-Information Benchmark
 - justify need for government intervention
- Extended Setting with Informational Frictions
 - show that intense intervention makes uncertainty about policy errors a factor in asset prices
 - this factor gets magnified by market speculation
 - it distracts market participants from analyzing economic fundamentals by focusing their attention on future policies
- Potential tension between
 - reducing price volatility
 - improving information efficiency

A Model with Perfect Information

Discrete-time with infinitely many periods: t = 0, 1, 2...

A risky asset, which pays a stream of **dividends** over time:

$$D_t = v_t + \sigma_D \varepsilon_t^D, \ \varepsilon_t^D \sim \mathcal{N}(0, 1)$$

v_t is an exogenous asset fundamental:

$$v_{t+1} = \rho_{v} v_{t} + \sigma_{v} \varepsilon_{t+1}^{v}, \ \varepsilon_{t+1}^{v} \sim \mathcal{N}\left(0,1\right)$$

- \triangleright v_{t+1} is **publicly observable** at time t in the baseline setting
- unobservable later in the setting with informational frictions

A Model with Perfect Information

Noise traders submit random market orders:

$$N_{t} = \rho_{N} N_{t-1} + \sigma_{N} \varepsilon_{t}^{N}, \ \varepsilon_{t}^{N} \sim \mathcal{N}(0, 1)$$

Rational short-term investors each maximize myopic trading profit:

$$U_t^i = \max_{X_t^i} E\left[-\exp\left(-\gamma W_{t+1}^i
ight) \mid \mathcal{F}_t, N_t
ight]$$

with
$$W^i_{t+1} = R^f ar{W} + X^i_t R_{t+1}$$
 and $R_{t+1} = D_{t+1} + P_{t+1} - R^f P_t$

Market Clearing without government intervention:

$$\int_0^1 X_t^i di = N_t$$

Market Breakdown

Conjecture a linear equilibrium: $P_t = \frac{1}{R^f - \rho_{tt}} v_{t+1} + p_N N_t$

▶ The market breaks down when

$$\sigma_{N} > \sigma_{N}^{*} = \frac{R^{f} - \rho_{N}}{2\gamma \sqrt{\sigma_{D}^{2} + \left(\frac{R^{f}}{R^{f} - \rho_{v}}\right)^{2} \sigma_{v}^{2}}}.$$

- A feedback loop: $\sigma_N \nearrow \Rightarrow$ a high risk premium and a more negative $p_N \Rightarrow$ more volatile price \Rightarrow even more negative p_N
- Short-term investors ineffective in trading against noise trader risk, similar to DSSW (1990)

Government Intervention

▶ Introduce a government that trades the asset and takes a position

$$X_{t}^{G} = \underbrace{\psi_{N,t}N_{t}}_{\text{intended intervention}} + \underbrace{\sqrt{\textit{Var}\left[\psi_{N,t}N_{t} \mid \mathcal{F}_{t-1}\right]}G_{t}}_{\text{unintended noise}}, \ G_{t} \sim \mathcal{N}\left(0, \sigma_{G}^{2}\right)$$

- lacktriangle the government chooses intervention intensity $\psi_{N,t}$
- lacktriangleright the amount of unintended noise increases with $\psi_{N,t}$
- Leaning against noise traders consistent with paternalistic philosophy of CSRC to protect retail investors and stabilize markets
- ightharpoonup Can microfound G_t as noise in government private information

Government Objective

• choose ψ_{N+} to minimize

$$\min_{\psi_{N,t}} \ \gamma_{\sigma} \textit{Var} \left[\Delta \textit{P}_{t} \left(\psi_{N,t} \right) | \mathcal{F}_{t} \ \right] + \gamma_{v} \textit{Var} \left[\textit{P}_{t} \left(\psi_{N,t} \right) - \frac{1}{\textit{R}^{f} - \rho_{v}} \textit{v}_{t+1} \ | \mathcal{F}_{t} \right]$$

- ► Two objectives, often treated as equivalent in policy discussions:
 - lacktriangle Penalty γ_σ for (conditional) price volatility,
 - lacktriangle Penalty γ_{v} for price deviation from fundamental
- With perfect information, there is always a linear equilibrium:

$$P_{t} = \frac{1}{R^{f} - \rho_{v}} v_{t+1} + \rho_{N} N_{t} + \rho_{G} G_{t}$$

Either objective would lead the government to take a sufficiently large $\psi_{N,t}$ to prevent market breakdown

Extended Model with Information Frictions & Gov.

- \triangleright v_{t+1} is unobservable
- ▶ The public information set: $\mathcal{F}_t^M = \sigma\left(\{D_s, P_s\}_{s < t}\right)$
 - $\hat{v}_{t+1}^{M} = E\left[v_{t+1} \mid \mathcal{F}_{t}^{M}
 ight]$ serves as the anchor of asset valuation
 - $\hat{N}_t^M = E[N_t \mid \mathcal{F}_t^M]$ is the market perceived noise trading
- ▶ **Government** trade intervention
 - no private information
 - trades (with noise)

$$X_t^{\mathcal{G}} = \psi_{\hat{\mathcal{N}}} \hat{\mathcal{N}}_t^{M} + \sqrt{\mathit{Var}\left[\psi_{\hat{\mathcal{N}}} \hat{\mathcal{N}}_t^{M} \mid \mathcal{F}_{t-1}^{M}
ight]} \mathit{G}_t$$

$$\min_{\psi_{N}} \ \gamma_{\sigma} \underbrace{\textit{Var}\left[\Delta P_{t}\left(\psi_{\hat{N}}\right) \ | \ \mathcal{F}_{t-1}^{M}\right]}_{\textit{Price volatility}} + \ \gamma_{v} \underbrace{\textit{Var}\left[P_{t}\left(\psi_{\hat{N}}\right) - \frac{1}{R^{f} - \rho_{v}} v_{t+1} \ | \ \mathcal{F}_{t-1}^{M}\right]}_{\textit{1} \ / \ \textit{Price informativeness}}$$

Information Choice by Investors

▶ Each investor i chooses $a_t^i \in \{0, 1\}$ to acquire private info about either v_{t+1} or future government noise G_{t+1} :

$$s_t^i = v_{t+1} + \left[a_t^i au
ight]^{-1/2} \varepsilon_t^{s,i} \quad \text{or} \quad g_t^i = G_{t+1} + \left[\left(1 - a_t^i
ight) au
ight]^{-1/2} \varepsilon_t^{g,i}$$

- ► Three key forces drive which signal investors choose
 - intragenerational substitutability: price today reflects what others choose to learn today
 - intergenerational complementarity: price tomorrow reflects what others choose to learn tomorrow
 - intergenerational complementarity between the government intervention and investor choice: the more that the government trades, price tomorrow reflects government noise more
- Government internalizes these forces in choosing its intervention intensity

Equilibria with Government Intervention

A fundamental-centric equilibrium

 \triangleright all investors acquire signals about v_{t+1}

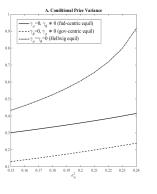
$$P_{t} = p_{\hat{v}} \hat{v}_{t+1}^{M} + p_{v} \left(v_{t+1} - \hat{v}_{t+1}^{M} \right) + p_{N} N_{t} + p_{g} G_{t}$$

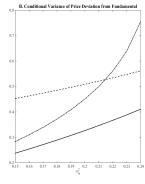
ightharpoonup investor trading makes price more informative about v_{t+1}

A government-centric equilibrium

ightharpoonup all investors acquire signals about G_{t+1}

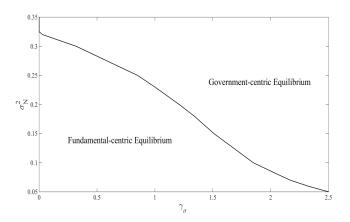
$$P_{t} = p_{\hat{v}} \hat{v}_{t+1}^{M} + p_{\hat{G}} \hat{G}_{t+1}^{M} + p_{G} \left(G_{t+1} - \hat{G}_{t+1}^{M} \right) + p_{N} N_{t} + p_{g} G_{t}$$


- occurs when the government intervention is sufficiently intensive
- price may be less informative about v_{t+1}


A mixed equilibrium

ightharpoonup some investors acquire signals about v_{t+1} some about G_{t+1}

Market Equilibrium with a Single Government Objective


Three cases: (1) $\gamma_{\sigma}=$ 0, $\gamma_{v}\neq$ 0; (2) $\gamma_{v}=$ 0, $\gamma_{\sigma}\neq$ 0; (3) $\gamma_{\sigma}=\gamma_{v}=$ 0

Boundary btw Government- & Fundamental-centric Equilibria

- Government-centric equilibrium more likely
 - the larger the noise trader variance
 - the larger the weight on reducing price volatility

Summary

- Government intervention helps to stabilize financial markets
 - unregulated markets can be highly volatile and might break down when noise trader risk is sufficiently large
- ► Adverse effects:
 - active government intervention renders noise in government policy a pricing factor
 - intervention can cause investors to speculate on government noise rather than fundamentals, which amplifies effects of policy errors
- Tension between objectives
 - reducing price volatility
 - improving informational efficiency
 - while price volatility is lower with intervention, informational efficiency can be worse

Final Remarks

The financial system carries designated duties in supporting China's unique economic structure:

- ► Two tracks: state vs private firms, with soft budget constraints to state firms and local governments
- A government system, politically centralized but fiscally decentralized
- Different roles played by the financial system in China:
 - vital interactions with objectives, incentives, and distortions of the government system
 - need a different framework for financial stability regulation and monitoring

The Handbook of China's Financial System

The Handbook of China's Financial System

Banking and Monetary Policy

```
1. Banking System of China [PDF][Sides]
```

Guofeng Sun (People's Bank of China)

2. Shadow Banking [PDF][Slides]

Xiaodong Zhu (University of Toronto)

3. Monetary Policy Framework and Transmission Mechanisms [PDF][Slides]

Yiping Huang, Tingting Ge & Chu Wang (National School of Development, Peking University)

4. Monetary Policy Instruments [PDF] [Slides]

Tao Wang (UBS Investment Bank)

5. Interest Rate Liberalization [PDF][Slides]

Jun Ma (PBC School, Tsinghua University)

Bond and Money Markets

VoxChina.org

